OPERATION APPROACHES ON gs - OPEN SETS IN TOPOLOGICAL SPACES

Jayashree R¹, Dr. Sivakamasundari K²

¹Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India.

²Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India.

Abstract: The concept of an operation κ on the family of gs-open sets $GSO(X,\tau)$, in a topological space (X,τ) is introduced. The concepts of κ -open sets, κ -regular and κ -closed are introduced using the operation κ and their related topological properties are studied.

Key words: κ -interior, κ -open set, κ -regular set, κ -closed set, gs_{κ} closure, gs-closure, $regular_{\kappa}$ operation and $open_{\kappa}$ operation.

Introduction

In 1963, Levine [4] introduced the concept of semi-open set. Following this the notion of generalized semi closed sets was introduced by Arya and Nour [1] in 1990.

Kasahara [3] defined the concept of an operation on a topological space and introduced the concept of a α -closed graphs of functions in 1979. Following his work, Jankovic [2], developed the concept of α -closed sets and investigated functions with α closed graphs in 1983. Ogata [5] defined and investigated the concept of operation-open sets.

In this paper, we shall introduce operation κ on generalized semi open sets. Section 3 of this paper deals with the definition κ -interior, κ -open set, κ -regular set, κ -closed set, g_{κ} closure, g_{κ} -closure, g_{κ} -clos and properties of $open_{\kappa}$ operation.

Preliminary

Definition 2.1

Let (X, τ) be a topological space. A subset A of a space (X, τ) is called **generalized semi closed** (gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

Definition 2.2

Let (X,τ) be a topological space. A subset A of a space (X,τ) is called **generalized semi open** (gs-open) set if $X \setminus A$ is gsclosed. The collection of all gs-open sets is denoted by $GSO(X,\tau)$. Clearly $\tau \subseteq GSO(X,\tau)$.

Remark 2.3

Every closed set is gs-closed but the converse not true.

Definition 2.4 [2]

Let (X, τ) be a topological space. An **operation** $\gamma: \tau \to P(X)$ is a mapping from τ into the power set of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Definition 2.5 [5]

A subset A of a space (X,τ) will be called a γ -open set of (X,τ) if for each $x \in A$, there exists an open set U such that $x \in A$ *U* and $U^{\gamma} \subset A$. τ_{γ} will denote the set of all γ -open sets. Clearly we have $\tau \supset \tau_{\gamma}$.

Definition 2.6 [5]

A subset B of (X, τ) is said to be γ -closed in (X, τ) if $X \setminus B$ is γ -open in (X, τ) .

Definition 2.7 [5]

A point $x \in X$ is in the γ -closure of a set $A \subseteq X$ if $U^{\gamma} \cap A \neq \phi$ for each open set U of x. The γ closure of a set A is denoted by $Cl_{\nu}(A)$.

An operation $\gamma: \tau \to P(X)$ is a mapping from τ into the power set P(X). τ_{ν} - $Cl(A) = \cap \{F: A \subseteq F, X \setminus F \in \tau_{\nu}\}.$ Where τ_{ν} denotes the set of all γ -open sets in (X, τ) .

3. κ - Open sets.

Definition 3.1

Let (X,τ) be a topological space. A mapping $\kappa: GSO(X,\tau) \to P(X)$ the family of generalized semi open sets $GSO(X,\tau)$ to the power set of X such that $V \subseteq V^{\kappa}$ for every $V \in GSO(X,\tau)$ where V^{κ} denotes the value of V under the operation κ .

Example 3.2

Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then $\kappa: GSO(X, \tau) \to P(X)$ defined by
$$A^{\kappa} = \begin{cases} A & \text{if } b \in A \\ A & \text{otherwise} \end{cases}$$
 is a κ -operation on (X, τ) as $A \subseteq A^{\kappa}$, for every

$$A \in GSO(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}.$$

Definition 3.3

A subset A of a space (X,τ) will be called a κ -open set of (X,τ) if for each $x \in A$, there exists a gs-open neighbourhood U of x and $U^{\kappa} \subseteq A$.

 $\kappa O(X, \tau)$ will denote the set of all κ -open sets.

Example 3.4

Let (X, τ) and κ be defined as in Example(3.2). Then the κ -open sets are $\{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$.

Theorem 3.5

If κ is an operation on $GSO(X, \tau)$, then the following results are true.

- (a) Every κ open set of (X, τ) is gs- open in (X, τ) .
- (i.e) $\kappa O(X, \tau) \subseteq GSO(X, \tau)$.
- (b) Every γ open set of (X, τ) is κ open.
- (c) Arbitrary union of κ open sets in (X, τ) is also a κ open set.

Proof

- (a) Consider a κ open setAin (X, τ) and a point $x \in A$. By Definition(3.3), there exists a gs-open neighbourhood B of xsuch that $B^{\kappa} \subseteq A$. By Definition(3.1), $B \subseteq B^{\kappa}$ and hence $x \in B \subseteq B^{\kappa} \subseteq A$. (i.e., $x \in B \subseteq A$ implying that A is a gs-open set. Thus $\kappa O(X, \tau) \subseteq GSO(X, \tau)$.
- (b) Consider a γ -open set C of (X, τ) with $x \in C$. By Definition(2.7), there exists an open set U such that $x \in U \subseteq U^{\kappa} \subseteq C$. Since every open set is gs-open, C is
- (c) Consider $\{B_{\alpha}: \alpha \in J\}$, a collection of κ -open sets in (X, τ) . Let $x \in B = \bigcup B_{\alpha}$. Hence $x \in B_{\alpha}$ for some α and since B_{α} is κ -open, there exists a gs-open neighborhood U of x such that $U^{\kappa} \subseteq B_{\alpha} \subseteq B$. Therefore B is κ -open.

Example 3.6

This example shows that a gs-open set need not be κ -open.

Let
$$X = \{a, b, c\}$$
, $\tau = \{x, \phi, \{a\}, \{a, b\}\}$ and $gs\text{-}open = \{x, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Let κ be an operation on $GSO(X, \tau)$ such that $\kappa(A) = \{A, c\}$, $if \ b \in A$.

Then the κ - open sets are $\{X, \phi, \{b\}, \{a, b\}, \{a, c\}\}$. Here $\{a\}$ is gs - open but not

Example 3.7

This example shows that a κ - open set need not be γ - open.

Let
$$X = \{a, b, c\}, \tau = \{x, \phi, \{a\}, \{b\}, \{a, b\}\}$$
 and $gs-open = \{x, \phi, \{a\}, \{b\}, \{a, b\}\}\}$

 $\{x, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let κ be an operation on $GSO(X, \tau)$ such that $\kappa(A) = gcl(A)$. Then the κ -open sets are $\{X, \phi, \{b\}, \{a, c\}\}\$. And γ be an operation on τ . The γ - open sets are $\{X, \phi, \{b\}\}\$. Here $\{a, c\}$ is κ - open but not

Remark 3.8

Intersection of any two κ -open sets need not be κ -open.

Counter Example 3.9

The following example shows that intersection of κ - open sets need not be κ - open.

Let
$$X = \{a, b, c\}$$
, $\tau = \{x, \phi, \{a\}, \{a, b\}\}$ and $GSO(X, \tau) = \{x, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Let κ be an operation on $GSO(X, \tau)$ such that $\kappa(A) = \{A, c\}$, if $b \in A$.

Then the κ - opensets are $\{X, \phi, \{b\}, \{a, b\}, \{a, c\}\}.$

Intersection of the κ -opensets $\{a,b\}$ and $\{a,c\}$ is not a κ -open.

Definition 3.10

A κ -operation $\kappa: GSO(X, \tau) \to P(X)$ is called **regular** operation given $x \in X$ and for each pair of gs-open neighbourhoods A and B of x, there exists a gs-open neighbourhood C of x such that $A^K \cap B^K \supset C^K$.

A topological space (X, τ) is called κ -regular if for given $x \in X$ and each gs-open neighbourhood U of X, there exists a gs-open neighbourhood V of x such that $V^{\kappa} \subset U$.

Theorem 3.12

Let (X, τ) be a topological space and κ an operation on $GSO(X, \tau)$. Then the following results are equivalent.

- (a) $GSO(X, \tau) = \kappa O(X, \tau)$.
- (b) (X, τ) is a κ -regular space.
- (c) Given $x \in X$ and every gs-open set B of (X, τ) containing x there exists a κ -open set W of (X, τ) such that $x \in W$ and $W \subseteq B$.

Proof

$(a) \Rightarrow (b)$

Let x in X and V, a gs-open neighbourhood of x. By (a), V is κ -open in (X, τ) . By Definition(3.3), there exists a gs-open neighbourhood U of x such that $U^{\kappa} \subseteq V$. Hence by Definition(3.11), (X, τ) is κ -regular.

$$(\mathbf{b}) \Rightarrow (\mathbf{c})$$

Consider $x \in X$ and a gs-open neighbourhood B of x. By(b),(X, τ) is a κ -regular space. Hence by Definition (3.11), there exists a gs-open neighbourhood W of x such that $W^{\kappa} \subseteq B$. By Definition(3.1), $W \subseteq W^{\kappa}$. Hence $x \in W \subseteq W^{\kappa} \subseteq B$.

Claim: W is κ -open.

Let $y \in W$. Implies

 $y \in X$ and W, be the gs-open neighbourhood of y. Then By (b), there exists a gs-open neighbourhood U of x such that $U^{\kappa} \subseteq W$. By Definition(3.3), W is κ -open.

exists a κ -open set W such that $x \in W \subseteq B$, proving (c).

$(c) \Rightarrow (a)$

In Theorem(3.5)(i), it is proved that $\kappa O(X, \tau) \subseteq GO(X, \tau)$. It is left to prove $GSO(X, \tau) \subseteq \kappa O(X, \tau)$.

Let A be a gs-open set in (X, τ) and $x \in A$. Then $x \in X$ and By (c), there exists a κ -open set W of (X, τ) such that $x \in W \subseteq A$. (1) Since W is a κ -open set there exists

a gs-open set V such that $x \in V^{\kappa} \subseteq W$.

(1) and (2) implies $x \in V^{\kappa} \subseteq A$. Implies A is κ -open.

Therefore, $GSO(X, \tau) \subseteq \kappa O(X, \tau)$.

Hence, $GSO(X, \tau) = \kappa O(X, \tau)$.

In general the intersection of two κ -open sets is not κ -open. The following theorem proves that if κ is a regular κ -operation then the intersection of κ -open sets is κ -open.

Theorem 3.13

Let κ be a regular, operation on $GSO(X,\tau)$. If A and B are κ -open sets in (X,τ) then $A \cap B$ is κ -open.

Proof

Let A and B be κ -open sets in (X, τ) . Consider $C = A \cap B$. Let $x \in C$ implies $x \in A$ and $x \in B$. Since A and B are κ -open sets, there exists a gs-open neighbourhoods U and V of x such that $U^{\kappa} \subseteq A$ and $V^{\kappa} \subseteq B$. Since the operation κ is regular, by $C^{\kappa} \subseteq U^{\kappa} \cap V^{\kappa} \subseteq A \cap B$. Therefore $A \cap B$ is κ -Definition (3.10), there exists a gs-open neighbourhood C of x such that open.

Remark 3.14

 $\kappa O(X, \tau)$ forms a topology whenever κ is $regular_{\kappa}$.

Definition 3.15

A subset A of a topological space (X, τ) is called κ -closed whenever X - A is

Example 3.16

From the Example(3.2) and Example(3.4), the κ -closed sets are $\{X, \phi, \{a\}, \{c\}, \{a, c\}\}\$.

Definition 3.17

Let κ be an operation on $GSO(X, \tau)$. A point $x \in X$ is said to be a

 κ -closure point of the set Aif $U^{\kappa} \cap A \neq \phi$ for each gs-open neighbourhood

$$gs Cl_{\kappa}(A) = \{x \in X/U^{\kappa} \cap A \neq \emptyset, \forall U, gs = 0\}$$

open neighborhood of x}

Example 3.18

Let X, τ and κ be defined as in Example(3.2). Let $A = \{b, c\}$ then $Cl_{\kappa}(A) = \{a, b, c\} = X$.

Remark 3.19

Let κ be an operation on $GSO(X, \tau)$. Then $gs\ Cl(A) \subseteq gs\ Cl_{\kappa}(A)$.

Let $x \in gscl(A)$. Implies $A \cap V \neq \phi$, for every gs-open neighbourhood V of x. Now, $V \subseteq V^{\kappa}$ implies $A \cap V^{\kappa} \neq \phi$. By Definition (3.17), $x \in Cl_{\kappa}(A)$. Hence, $gsCl(A) \subseteq gsCl_{\kappa}(A)$.

Definition 3.20

Let κ be an operation on $GSO(X, \tau)$. Then $gs_{\kappa}Cl(A)$ is defined as the intersection of all κ -closed sets containing A. $gs_{\kappa}Cl(A) = \cap \{F \subseteq X / A \subseteq F \text{ and } X \setminus F \in \kappa O(X, \tau)\}$

Let (X,τ) be a topological space and A a subset of X and κ be an operation on $GSO(X,\tau)$. Then for a given $\gamma \in X$, $\gamma \in X$ $gs_{\kappa}Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in \kappa O(X, \tau)$ such that $y \in V$.

Proof

Define: $F = \{ y \in X/V \cap A \neq \phi \text{ for every } V \in \kappa O(X, \tau) \text{ and } y \in V \}$. It is to be proved that $gs_{\kappa}Cl(A) = F$.

Take $x \notin F$. By the construction of F, there exists a κ -open set V containing x such that $V \cap A = \phi$. Then $X \setminus V$ is κ -closed and $A \subseteq X \setminus V$. Taking $gs_{\kappa}Cl(A)$ on both sides, $gs_{\kappa}Cl(A) \subseteq gs_{\kappa}Cl(X \setminus V) = X \setminus V$. Since $x \in V$, $x \notin X \setminus V$ implie $x \notin gs_{\kappa}Cl(A)$. Hence $gs_{\kappa}Cl(A) \subseteq F$.

Take $x \notin gs_{\kappa}Cl(A) = \cap \{E/A \subseteq E \text{ and } X \setminus E \in \kappa O(X, \tau)\}$. Then there exists κ -closed set E such that $A \subseteq E$, but $x \notin E$ implies $x \in X \setminus E \in \kappa O(X, \tau)$ and $(X \setminus E) \cap A = \phi$ implies $x \notin E$. Therefore $E \subseteq gs_{\kappa}Cl(A)$. Hence $gs_{\kappa}Cl(A) = E$.

Theorem 3.22

Let (X, τ) be a topological space. Let A and B be subsets of X and κ be an operation on $GSO(X, \tau)$. The statements below are true.

- The set $gs_{\kappa}Cl(A)$ is κ -closed and $A \subseteq gs_{\kappa}Cl(A)$. (a)
- A is κ -closed if and only if $A = g_{\kappa}Cl(A)$. (b)
- (c) If $A \subseteq B$ then $gs_{\kappa}Cl(A) \subseteq gs_{\kappa}Cl(A)$.
- (d) $gs_{\kappa}Cl(A) \cup gs_{\kappa}Cl(B) \subseteq gs_{\kappa}Cl(A \cup B)$.
- (e) If κ is $regular_{\kappa}$, then $gs_{\kappa}Cl(A) \cup gs_{\kappa}Cl(B) = gs_{\kappa}Cl(A \cup B)$.
- (f) $gs_{\kappa}Cl(A \cap B) \subseteq gs_{\kappa}Cl(A) \cap gs_{\kappa}Cl(B).$
- (g) $gs_{\kappa}Cl(gs_{\kappa}Cl(A)) = gs_{\kappa}Cl(A)$.

(a) Let $A \subseteq X$. Consider $gs_{\kappa}Cl(A) = B$, say. Claim: is κ-closed.To prove:X - B is κ -open. Now B = $gs_{\kappa}Cl(A) = \cap \{all \kappa - closed sets containg A\}.$

 $X \setminus B = B^c = (gs_{\kappa}Cl(A))^c = \bigcup \{all \ \kappa \text{- open sets contained in } A\} = a \ \kappa \text{- open set (by Theorem (3.5) (c)}.$

 $A \subseteq gs_{\kappa}Cl(A)$ follows directly from the Definition(3.20).

(b) A is κ -closed if and only if $A = gs_{\kappa}Cl(A)$

Necessity: Since A is κ -closed, $gs_{\kappa}Cl(A) = \cap \{\text{all } \kappa - \text{closed sets containg } A\} = A$

Sufficiency: Since $A = gs_{\kappa}Cl(A)$ and from (a) $gs_{\kappa}Cl(A)$ is κ -closed. We get A is

- (c) Let $A \subseteq B$.
- $gs_{\kappa}Cl(A) = \bigcap \{\text{all } \kappa \text{closed sets containg A}\} = \bigcap \mathcal{A} \text{ where } \mathcal{A} \text{ is the collection of all } \kappa \text{closed sets containg A}$ $gs_{\kappa}Cl(B) = \cap \{\text{all }\kappa - \text{closed sets containg B}\} = \cap \mathcal{B}$ where \mathcal{B} is the collection of all $\kappa - \text{closed sets containg }\mathcal{B}$ Since $\mathcal{A} \subseteq \mathcal{B}$, $(\cap \mathcal{A}) \subseteq (\cap \mathcal{B})$. Therefore $gs_{\kappa}Cl(A) \subseteq gs_{\kappa}Cl(A)$.
- (d) Let $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Therefore By $(c)gs_{\kappa}Cl(A) \subseteq gs_{\kappa}Cl(A \cup B)$ and $gs_{\kappa}Cl(B) \subseteq gs_{\kappa}Cl(A \cup B)$. Hence $gs_{\kappa}Cl(A) \cup gs_{\kappa}Cl(B) \subseteq gs_{\kappa}Cl(A \cup B).$
- (e) Suppose κ is $regular_{\kappa}$. Let $y \notin gs_{\kappa}Cl(A) \cup gs_{\kappa}Cl(B)$. Then $y \notin gs_{\kappa}Cl(A)$ and $y \notin gs_{\kappa}Cl(A)$. Then there exist two κ open sets U and V such that $U \cap A = \phi$ and $V \cap B = \phi$. Since κ is a regular, operation, by Theorem (3.11), $A \cap B$ is κ -open in (X, τ) . Therefore $(U \cap A) \cap (V \cap B) = (U \cap V) \cap (A \cap B) = \phi$. $x \notin gs_{\kappa}Cl(A \cup B)$. Hence, $gs_{\kappa}Cl(A \cup B) \subseteq gs_{\kappa}Cl(A) \cup gs_{\kappa}Cl(B)$.
- (f) We know $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Hence by (c), $gs_{\kappa}Cl(A \cap B) \subseteq gs_{\kappa}Cl(A)$ and $gs_{\kappa}Cl(A \cap B) \subseteq gs_{\kappa}Cl(B)$. Therefore $gs_{\kappa}Cl(A \cap B) \subseteq gs_{\kappa}Cl(A) \cap gs_{\kappa}Cl(B)$.
- (g) From (a), $gs_{\kappa}Cl(A) \subseteq gs_{\kappa}Cl(gs_{\kappa}Cl(A))$. Now by Theorem(3.19) for every κ -open set containing z in (X, τ) , $V \cap$ $gs_{\kappa}Cl(A) \neq \phi$. Therefore there exist a point $y \in V$ and $y \in gs_{\kappa}Cl(A)$. Again by Theorem (3.19), $V \cap A \neq \phi$. Which implies $z \in S_{\kappa}Cl(A)$ $gs_{\kappa}Cl(A)$. Hence $gs_{\kappa}Cl(gs_{\kappa}Cl(A)) = gs_{\kappa}Cl(A)$.

Definition 3.23

An operation κ on $GSO(X,\tau)$ is said to be **open** operation if for every gs-open neighbourhood U of $x \in X$, there exists a κ -open set V such that $x \in V$ and $V \subset U^{\kappa}$

Let $\kappa: GSO(X,\tau) \to P(X)$ be an operation on $GSO(X,\tau)$ and P and Q are subsets of X. Then the results below are true.

- (a) $gsCl_{\kappa}(A)$ is gs-closed and $A \subseteq gsCl_{\kappa}(A)$.
- (b) A is κ -closed if and only if $A = gsCl_{\kappa}(A)$.
- (c) If (X, τ) is a κ -regular space then $gsCl_{\kappa}(A) = gscl(A)$.
- (d) If $A \subseteq B$ then $gsCl_{\kappa}(A) \subseteq gsCl_{\kappa}(B)$.
- $gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B) \subseteq gsCl_{\kappa}(A \cup B).$ (e)
- If κ is is $regular_{\kappa}$, then $gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B) = gsCl_{\kappa}(A \cup B)$. (f)
- (g) $gsCl_{\kappa}(A \cap B) \subseteq gsCl_{\kappa}(A) \cap gsCl_{\kappa}(B)$.
- (h) If κ is open κ operation then $gsCl_{\kappa}(A) = gs_{\kappa}Cl(A)$ and $gsCl_{\kappa}(gsCl_{\kappa}(A)) = gsCl_{\kappa}(A)$.

(a) Let $A \subseteq X$. Consider $x \in gscl(Cl_{\kappa}(A))$. Then for every gs-open neighbourhood V of $x, V \cap gsCl_{\kappa}(A) \neq \phi$. Let $y \in S$ $V \cap gsCl_{\kappa}(A)$. Since $V \subseteq V^{\kappa}$, $V^{\kappa} \cap gsCl_{\kappa}(A) \neq \phi$. Implies $x \in gsCl_{\kappa}(A)$. Therefore, $gsCl(gsCl_{\kappa}(A)) \subseteq gsCl_{\kappa}(A)$. Hence $gsCl_{\kappa}(A)$ is gs-closed.

Let $x \in A$ and U be any gs-open neighbourhood of x, then $x \in U \cap A$. Now $U \subseteq U^{\kappa}$ implies $x \in U^{\kappa} \cap A$ which $U^{\kappa} \cap A = \phi$. Therefore, $x \in gsCl_{\kappa}(A)$. Hence, $A \subseteq gsCl_{\kappa}(A)$.

(b) Necessity: Let A be κ -closed. Then $X \setminus A$ is κ -open. Claim: $gsCl_{\kappa}(A) \subseteq A$. Let $x \notin A$. Then $\kappa \in X \setminus A$. Since $K \setminus A$ is a κ -open. open set containing x, by Definitin(3.3), there exists a gs-open set containing x such that $U^{\kappa} \subseteq X \setminus A$ which implies $U^{\kappa} \cap A = \phi$. Therefore $x \notin gsCl_{\kappa}(A)$. Hence $gsCl_{\kappa}(A) \subseteq A$.

Sufficiency: Let $A = gsCl_{\kappa}(A)$. Let $x \in X \setminus A$. Then $x \notin A = gsCl_{\kappa}(A)$, there exists a gs-open neighbourhood W of x such that $W^{\kappa} \cap A = \phi$ which implies $W^{\kappa} \subseteq X \setminus A$. By Definition(3.3), $X \setminus A$ is κ -open (i.e.) A is κ -closed.

- (c) $gscl(A) \subseteq gscl_{\kappa}(A)$ is proved in Remark(3.17). Let $x \notin gscl(A)$. Then there exists a gs-open neighbourhood U of x such that $U \cap A = \phi$. Since (X, τ) is a κ -regular space by Definition(3.11), for every $x \in X$, there exists a gsneighbourhood V of x such that $V^{\kappa} \subseteq U$ and so $V^{\kappa} \cap A = \phi$ which implies $x \notin gsCl_{\kappa}(A)$. Therefore, $gsCl_{\kappa}(A) \subseteq gscl(A)$.
- (d) Given $A \subseteq B$. Let $x \in gsCl_{\kappa}(A)$. By Definition(3.17), there exists a gs-open neighbourhood U of x such that $U^{\kappa} \cap A \neq \emptyset$ ϕ which implies $V^{\kappa} \cap B \neq \phi$. Therefore $x \in gsCl_{\kappa}(A)$. Hence $gsCl_{\kappa}(A) \subseteq gsCl_{\kappa}(B)$.

- (e) $A \subseteq (A \cup B)$ implies $gsCl_{\kappa}(A) \subseteq gsCl_{\kappa}(A \cup B)$ From(d). Similarly $B \subseteq (A \cup B)$ implies $gsCl_{\kappa}(B) \subseteq$ $gsCl_{\kappa}(A \cup B)$.
 - Hence, $gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B) \subseteq gsCl_{\kappa}(A \cup B)$.
- (f) Let κ is $aregular_{\kappa}$ operation. Let $x \notin gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B)$. $x \notin gsCl_{\kappa}(A)$ and $x \notin gsCl_{\kappa}(B)$. There exists gs-open neighbourhoods U and V of x such that $U^{\kappa} \cap A = \phi$ and $V^{\kappa} \cap B = \phi$. Since κ is a regular, by Definition (3.10), there exists a gs-open neighbourhood C of x such that $C^{\kappa} \subseteq U^{\kappa} \cap V^{\kappa}$. Which implies $C^{\kappa} \cap (A \cup B) \subseteq (U^{\kappa} \cap A)$ V^{κ}) \cap $(A \cup B) = \phi$ and $x \notin gsCl_{\kappa}(A \cup B)$. Therefore $gsCl_{\kappa}(A \cup B) \subseteq gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B)$. Hence $gsCl_{\kappa}(A) \cup gsCl_{\kappa}(B) = gsCl_{\kappa}(A \cup B)$.
- (g) $A \cap B \subseteq A$ implies $gsCl_{\kappa}(A \cap B) \subseteq gsCl_{\kappa}(A)$ and $A \cap B \subseteq B$ implies $gsCl_{\kappa}(A \cap B) \subseteq gsCl_{\kappa}(B)$ Therefore, $gsCl_{\kappa}(A \cap B) \subseteq gsCl_{\kappa}(B)$ $(B) \subseteq gsCl_{\kappa}(A) \cap gsCl_{\kappa}(B)$.
- (h) Let $y \notin gsCl_{\kappa}(A)$, there exists a gs-open neighbourhood U of y such that $(U^{\kappa} \cap A) = \phi$. Since the operation κ is open κ , there exists a κ -open set V containing y such that $V \subseteq U^{\kappa}$ implies $V \cap A = \phi$ and $x \notin gs_{\kappa}Cl(A)$ by Theorem(3.19). Hence $gs_{\kappa}Cl(A) \subseteq gsCl_{\kappa}(A)$.
- Let $x \in gsCl_{\kappa}(A)$. Suppose $x \notin F$ where F is κ -closed and $A \subseteq F$. Then $x \in X \setminus F$, and $A \cap (X \setminus F) = \phi$. Since $X \setminus F$ is κ -open and $x \in X \setminus F$, there exists ags-open set W such that $x \in W$ and $W^{\kappa} \subseteq X \setminus F$. Which implies $A \cap W^{\kappa} = \phi$. Thus $x \notin gsCl_{\kappa}(A)$. Hence, if the operation κ is open κ operation then $gsCl_{\kappa}(A) = gs_{\kappa}Cl(A)$.

References

- Arya, S.P. and Nour, T.M., Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., (1990), 21,717-719. [1]
- Jankovic, D.S., On functions with α -closed graphs, Glasnic Mat., (1983), 18, 161-169. [2]
- Kasahara, S., Operation-compact spaces, Math. Japon., (24) 1979, 97-105. [3]
- Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly., (1960), 67, 269-275. [4]
- [5] Ogata, H., Operations on topological spaces and associated topology, Math. Japon., (1991), 36, 175-184.
- Sanjay Tahiliani., Operation approach to β -open sets and applications, Math. Commun., (2011), 16, 577-591 [6]

