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Abstract: The concept of an operation 𝜅 on the family of 𝑔𝑠-open sets 𝐺𝑆𝑂(𝑋, 𝜏), in a topological space (𝑋, 𝜏) is introduced. 

The concepts of 𝜅-open sets, 𝜅-regular and   𝜅-closed are introduced using the operation 𝜅 and their related topological properties 

are studied. 
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1. Introduction 

In 1963, Levine [4] introduced the concept of semi-open set. Following this the notion of generalized semi closed sets was 

introduced by Arya and Nour [1] in 1990.  

Kasahara [3] defined the concept of an operation on a topological space and introduced the concept of a 𝛼-closed graphs of 

functionsin 1979. Following his work, Jankovic [2], developed the concept of 𝛼-closed sets and investigated functions with 𝛼-

closed graphs in 1983.Ogata [5] defined and investigated the concept of operation-open sets. 

In this paper, we shall introduce operation 𝜅 on generalized semi open sets. Section 3 of this paper deals with the definition 

and properties of  𝜅-interior,𝜅-open set, 𝜅-regular set,𝜅-closed set,𝑔𝑠𝜅closure, 𝑔𝑠-closureκ, 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅operation and 

𝑜𝑝𝑒𝑛𝜅operation. 

 

2.  Preliminary 

Definition 2.1 

Let (𝑋, 𝜏) be a topological space. A subset 𝐴 of a space (𝑋, 𝜏) is called generalized semi closed (𝒈𝒔-closed) set if 𝑠𝑐𝑙(𝐴) ⊆ 𝑈 

whenever 𝐴 ⊆ 𝑈 and 𝑈 is semi-open in (𝑋, 𝜏). 

Definition 2.2 

Let (𝑋, 𝜏) be a topological space.A subset 𝐴 of a space (𝑋, 𝜏)is called generalized semi open (𝒈𝒔-open) set  if 𝑋\𝐴 is 𝑔𝑠-

closed. The collection of all 𝑔𝑠-open sets is denoted by ),( XGSO . Clearly 𝜏 ⊆ ),( XGSO . 

Remark 2.3 

Every closed set is 𝑔𝑠-closed but the converse not true. 

Definition 2.4 [2] 

Let (𝑋, 𝜏) be a topological space. An 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝛾: 𝜏 → 𝑃(𝑋) is a mapping from τ into the power set of 𝑋 such that 𝑉 ⊆ 𝑉𝛾 

for each 𝑉 ∈ 𝜏, where 𝑉𝛾 denotes the value of 𝛾 at 𝑉. 

Definition 2.5 [5] 

A subset 𝐴 of a space (𝑋, 𝜏) will be called a 𝜸- 𝒐𝒑𝒆𝒏 𝒔𝒆𝒕 of (𝑋, 𝜏) if for each 𝑥 ∈ 𝐴, there exists an open set 𝑈 such that 𝑥 ∈
𝑈 and 𝑈𝛾 ⊂ 𝐴. 𝜏𝛾 will denote the set of all        𝛾-open sets. Clearly we have 𝜏 ⊃ 𝜏𝛾. 

Definition 2.6 [5] 

A subset B of (𝑋, 𝜏) is said to be 𝜸- 𝒄𝒍𝒐𝒔𝒆𝒅in (𝑋, 𝜏)  if 𝑋\𝐵 is 𝛾-open in(𝑋, 𝜏). 

Definition 2.7 [5] 

A point 𝑥 ∈ 𝑋 is in the 𝜸- 𝒄𝒍𝒐𝒔𝒖𝒓𝒆 of a set 𝐴 ⊆ 𝑋 if 𝑈𝛾 ∩ 𝐴 ≠ 𝜙 for each open set 𝑈 of 𝑥. The 𝛾 closure of a set 𝐴 is denoted 

by 𝐶𝑙𝛾(𝐴). 

Definition 2.8[5] 

An operation 𝛾: 𝜏 → 𝑃(𝑋) is a mapping from τ into the power set P(X) .     𝜏𝛾- 𝐶𝑙(𝐴) = ∩ {𝐹: 𝐴 ⊆ 𝐹, 𝑋\𝐹 ∈ 𝜏𝛾}. 

Where 𝜏𝛾 denotes the set of all 𝛾-open sets in (𝑋, 𝜏). 

 

 

3. 𝜿 - Open sets. 

Definition 3.1 

Let ),( X  be a topological space. A mapping )(),(: XPXGSO   the family of generalized semi open sets 

),( XGSO  to the power set of X  such that 
VV   for every 𝑉 ∈ 𝐺𝑆𝑂(𝑋, 𝜏) where 

V denotes the value of V under the 

operation . 
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Example 3.2 

Let },,{ cbaX  and }},{},,{},{},{,,{ cababaX   . Then )(),(: XPXGSO   defined by 










AbifAcl

AbifA
A

)(


 is a  -operation on ),( X  as ,AA

 
for every

 }},{},,{},{},{},{,,),( cabacbaXXGSOA   . 

Definition 3.3 

A subset A of a space (𝑋, 𝜏) will be called a κ-open set of (𝑋, 𝜏) if for each 𝑥 ∈ 𝐴, there exists a 𝑔𝑠-open neighbourhood U of 

𝑥 and 𝑈𝜅 ⊆ 𝐴.  

𝜿𝑶(𝑿, 𝝉) will denote the set of all κ-open sets.  
Example 3.4 

Let ( ,X ) and  be defined as in Example(3.2). Then the κ-open sets are {𝑋, 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}}. 

Theorem 3.5 

If  κ is an operation on 𝐺𝑆𝑂(𝑋, 𝜏), then the following results are true. 

(a) Every 𝜅- 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 of (𝑋, 𝜏) is 𝑔𝑠- 𝑜𝑝𝑒𝑛 in (𝑋, 𝜏).  

(i.e) 𝜅𝑂(𝑋, 𝜏) ⊆ 𝐺𝑆𝑂(𝑋, 𝜏). 

(b) Every 𝛾- 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡of (𝑋, 𝜏) is 𝜅- 𝑜𝑝𝑒𝑛. 

(c) Arbitrary union of 𝜅- 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 in (𝑋, 𝜏) is also a𝜅- 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡. 

Proof 

(a) Consider a κ- open setAin (𝑋, 𝜏) and a point 𝑥 ∈ 𝐴. By Definition(3.3), there exists a 𝑔𝑠-open neighbourhood B of 𝑥 

such that 𝐵𝜅 ⊆ 𝐴. By Definition(3.1),   𝐵 ⊆ 𝐵𝜅  and hence 𝑥 ∈ 𝐵 ⊆ 𝐵𝜅 ⊆ 𝐴. (i.e,)𝑥 ∈ 𝐵 ⊆ 𝐴 implying that 𝐴 is a 𝑔𝑠-open set. 

Thus  𝜅𝑂(𝑋, 𝜏) ⊆ 𝐺𝑆𝑂(𝑋, 𝜏). 

(b) Consider a 𝛾-open set 𝐶 of  (𝑋, 𝜏) with 𝑥 ∈ 𝐶. By Definition(2.7), there exists an open set 𝑈 such that 𝑥 ∈ 𝑈 ⊆ 𝑈𝜅 ⊆ 𝐶. 

Since every open set is 𝑔𝑠-open, 𝐶 is          𝜅-open. 

(c) Consider {𝐵𝛼: 𝛼 ∈ 𝐽 }, a collection of 𝜅-open sets in (𝑋, 𝜏).                Let 𝑥 ∈ 𝐵 =∪ 𝐵𝛼 . Hence 𝑥 ∈ 𝐵𝛼for 

some 𝛼and since 𝐵𝛼 is 𝜅-open, there exists a     𝑔𝑠-open neighborhood 𝑈  of 𝑥 such that 𝑈𝜅 ⊆ 𝐵𝛼 ⊆ 𝐵. Therefore 𝐵 is 𝜅-open. 

Example 3.6 

This example shows that a 𝑔𝑠- 𝑜𝑝𝑒𝑛 set need not be  𝜅- 𝑜𝑝𝑒𝑛. 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝑥, 𝜙, {𝑎}, {𝑎, 𝑏}} and  𝑔𝑠-𝑜𝑝𝑒𝑛 = {𝑥, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. Let  𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏) 

such that 𝜅(𝐴) = {
𝐴       , 𝑖𝑓 𝑏 ∈ 𝐴   
{𝑎, 𝑐} , 𝑖𝑓 𝑏 ∉ 𝐴  

.      

Then the 𝜅- 𝑜𝑝𝑒𝑛 sets are {𝑋, 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. Here {𝑎} is 𝑔𝑠 - 𝑜𝑝𝑒𝑛  but not            𝜅- 𝑜𝑝𝑒𝑛. 

Example 3.7 

This example shows that a 𝜅- 𝑜𝑝𝑒𝑛  set need not be 𝛾- 𝑜𝑝𝑒𝑛. 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝑥, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}} and         𝑔𝑠–𝑜𝑝𝑒𝑛 =

{𝑥, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. Let  𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏) such that 𝜅(𝐴) = 𝑔𝑐𝑙(𝐴). Then the 𝜅- 𝑜𝑝𝑒𝑛 sets are 

{𝑋, 𝜙, {𝑏}, {𝑎, 𝑐}}. And 𝛾  be an operation on 𝜏. The 𝛾- 𝑜𝑝𝑒𝑛  sets are {𝑋, 𝜙, {𝑏}}.  Here {𝑎, 𝑐} is   𝜅- 𝑜𝑝𝑒𝑛  but not       𝛾- 𝑜𝑝𝑒𝑛. 

Remark 3.8 

Intersection of any two 𝜅-open sets need not be κ-open. 

Counter Example 3.9 

The following example shows that intersection of  𝜅- 𝑜𝑝𝑒𝑛  sets need not be 𝜅- 𝑜𝑝𝑒𝑛. 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝑥, 𝜙, {𝑎}, {𝑎, 𝑏}} and  𝐺𝑆𝑂(𝑋, 𝜏) = {𝑥, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. Let  𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏) 

such that  𝜅(𝐴) = {
𝐴       , 𝑖𝑓 𝑏 ∈ 𝐴   
{𝑎, 𝑐} , 𝑖𝑓 𝑏 ∉ 𝐴  

.      

Then the 𝜅- 𝑜𝑝𝑒𝑛sets are {𝑋, 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. 

Intersection of the 𝜅- 𝑜𝑝𝑒𝑛sets {𝑎, 𝑏} and {𝑎, 𝑐} is not a 𝜅- 𝑜𝑝𝑒𝑛. 

Definition 3.10 

A  -operation )(),(: XPXGSO  is called 𝒓𝒆𝒈𝒖𝒍𝒂𝒓𝜿operation given 𝑥 ∈ 𝑋 and for each pair of 𝑔𝑠-open 

neighbourhoods 𝐴 and 𝐵 of 𝑥, there exists a 𝑔𝑠-open neighbourhood 𝐶of x such that 
KKK CBA  . 

Definition 3.11 

A topological space ),( X  is called 𝜿- 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 if for given 𝑥 ∈ 𝑋 and each 𝑔𝑠-open neighbourhood U of x , there exists a 

𝑔𝑠-open neighbourhood V of x such that UV 
. 

Theorem 3.12 

Let (𝑋, 𝜏) be a topological space and 𝜅 an operation on 𝐺𝑆𝑂(𝑋, 𝜏). Then the following results are equivalent. 

(a) 𝐺𝑆𝑂(𝑋, 𝜏) = 𝜅𝑂(𝑋, 𝜏). 

(b) (𝑋, 𝜏) is a 𝜅-regular space. 

(c) Given 𝑥 ∈ 𝑋 and every 𝑔𝑠-open set 𝐵 of (𝑋, 𝜏) containing 𝑥 there exists a 𝜅-open set 𝑊 of (𝑋, 𝜏) such that 𝑥 ∈ 𝑊 and 

𝑊 ⊆ 𝐵. 
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Proof 

(a) ⇒ (b) 
Let 𝑥 in 𝑋 and 𝑉, a 𝑔𝑠-open neighbourhood of 𝑥. By (a), 𝑉 is 𝜅-open in (𝑋, 𝜏). By Definition(3.3), there exists a 𝑔𝑠-open 

neighbourhood 𝑈 of 𝑥such that 𝑈𝜅 ⊆ 𝑉. Hence by Definition(3.11), (𝑋, 𝜏) is 𝜅-regular. 
(b) ⇒ (𝒄) 

Consider 𝑥 ∈ 𝑋 and a 𝑔𝑠-open neighbourhood 𝐵 of 𝑥. By(b),(𝑋, 𝜏) is a 𝜅-regular space. Hence by Definition (3.11), there 

exists a 𝑔𝑠-open neighbourhood 𝑊 of 𝑥 such that 𝑊𝜅 ⊆ 𝐵. By Definition(3.1),  𝑊 ⊆ 𝑊𝜅 . Hence 𝑥 ∈ 𝑊 ⊆ 𝑊𝜅 ⊆ 𝐵. 
  Claim:𝑊 is 𝜅-open.             Let 𝑦 ∈ 𝑊. Implies 

𝑦 ∈ 𝑋 and 𝑊, be the 𝑔𝑠-open neighbourhood of 𝑦. Then By (b), there exists a 𝑔𝑠-open neighbourhood 𝑈 of 𝑥 such that 𝑈𝜅 ⊆ 𝑊. 

By Definition(3.3), 𝑊 is 𝜅-open.                   Hence, there 

exists a 𝜅-open set  𝑊 such that 𝑥 ∈ 𝑊 ⊆ 𝐵, proving (c). 

(c) ⇒ (a) 

In Theorem(3.5)(i), it is proved that 𝜅𝑂(𝑋, 𝜏) ⊆ 𝐺𝑂(𝑋, 𝜏). It is left to prove 𝐺𝑆𝑂(𝑋, 𝜏) ⊆ 𝜅𝑂(𝑋, 𝜏).   

         Let  𝐴 be a 𝑔𝑠-open set in (𝑋, 𝜏) and 𝑥 ∈ 𝐴. Then 𝑥 ∈ 𝑋 and By (c), there exists a      

𝜅-open set  𝑊 of (𝑋, 𝜏) such that 𝑥 ∈ 𝑊 ⊆ 𝐴.      (1) Since 𝑊 is a 𝜅-open set there exists 

a 𝑔𝑠-open set 𝑉 such that 𝑥 ∈ 𝑉𝜅 ⊆ 𝑊.   (2) 

(1) and (2) implies 𝑥 ∈ 𝑉𝜅 ⊆  𝐴.  Implies 𝐴 is 𝜅-open.         Therefore,𝐺𝑆𝑂(𝑋, 𝜏) ⊆ 𝜅𝑂(𝑋, 𝜏).   

            Hence, 𝐺𝑆𝑂(𝑋, 𝜏) = 𝜅𝑂(𝑋, 𝜏). 

In general the intersection of two 𝜅-open sets is not 𝜅-open. The following theorem proves that if 𝜅 is a regularκ –operation 

then the intersection of 𝜅-open sets is 𝜅-open. 

Theorem 3.13 

Let 𝜅 be a𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅operation on 𝐺𝑆𝑂(𝑋, 𝜏). If 𝐴 and 𝐵 are 𝜅-open sets in (𝑋, 𝜏) then 𝐴 ∩ 𝐵 is 𝜅-open. 

Proof 

Let 𝐴 and 𝐵 be 𝜅-open sets in (𝑋, 𝜏). Consider 𝐶 = 𝐴 ∩ 𝐵. Let 𝑥 ∈ 𝐶 implies 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵. Since 𝐴 and 𝐵 are 𝜅-open sets, 

there exists a 𝑔𝑠-open neighbourhoods 𝑈 and 𝑉 of 𝑥 such that 𝑈𝜅 ⊆  𝐴 and 𝑉𝜅 ⊆  𝐵. Since the operation 𝜅 is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅 , by 

Definition (3.10), there exists a 𝑔𝑠-open neighbourhood 𝐶 of 𝑥 such that               𝐶𝜅 ⊆ 𝑈𝜅 ∩ 𝑉𝜅 ⊆ 𝐴 ∩ 𝐵. Therefore 𝐴 ∩ 𝐵 is 𝜅-

open.  

Remark 3.14 

𝜅𝑂(𝑋, 𝜏) forms a topology whenever𝜅 is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅 . 

Definition 3.15 

A subset A  of a topological space ),( X
 
is called 𝜿- 𝒄𝒍𝒐𝒔𝒆𝒅 whenever AX   is       κ-open. 

Example 3.16 

From the Example(3.2) and Example(3.4), the  -closed sets are {𝑋, 𝜙, {𝑎}, {𝑐}, {𝑎, 𝑐}}. 

Definition 3.17 

Let 𝜅  be an operation on 𝐺𝑆𝑂(𝑋, 𝜏). A point Xx is said to be a                                           

  𝜿- 𝒄𝒍𝒐𝒔𝒖𝒓𝒆 𝒑𝒐𝒊𝒏𝒕 of the set  Aif   AU  for each 𝑔𝑠-open neighbourhood       U of x.   

                𝒈𝒔 𝑪𝒍𝜿(𝑨) = {𝑥 ∈ 𝑋/   AU , ∀𝑈, 𝑔𝑠-

 𝑜𝑝𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥} 

Example 3.18 

Let ,X  and  be defined as in Example(3.2). Let },{ cbA then XcbaAClK  },,{)( . 

Remark 3.19 

Let 𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏). Then  𝑔𝑠 𝐶𝑙(𝐴) ⊆ 𝑔𝑠 𝐶𝑙𝜅(𝐴). 

Proof 

Let 𝑥 ∈ 𝑔𝑠𝑐𝑙(𝐴). Implies 𝐴 ∩ 𝑉 ≠ 𝜙, for every 𝑔𝑠-open neighbourhood 𝑉 of 𝑥. Now, 𝑉 ⊆ 𝑉𝜅 implies 𝐴 ∩ 𝑉𝜅 ≠ 𝜙. By 

Definition (3.17), 𝑥 ∈ 𝐶𝑙𝜅(𝐴). Hence, 𝑔𝑠𝐶𝑙(𝐴) ⊆ 𝑔𝑠 𝐶𝑙𝜅(𝐴). 

Definition 3.20 

Let 𝜅  be an operation on 𝐺𝑆𝑂(𝑋, 𝜏). Then 𝒈𝒔𝜿𝑪𝒍(𝑨)is defined as the intersection of all 𝜅-closed sets containing 𝐴.                                                                         

𝒈𝒔𝜿𝑪𝒍(𝑨) =∩ {𝐹 ⊆ 𝑋/  𝐴 ⊆ 𝐹 𝑎𝑛𝑑 𝑋\𝐹 ∈ 𝜅𝑂(𝑋, 𝜏)} 

Theorem 3.21 

Let (𝑋, 𝜏) be a topological space and 𝐴 a subset of 𝑋 and 𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏). Then for a given 𝑦 ∈ 𝑋, 𝑦 ∈
𝑔𝑠𝜅𝐶𝑙(𝐴) if and only if 𝑉 ∩ 𝐴 ≠ 𝜙 for every 𝑉 ∈ 𝜅𝑂(𝑋, 𝜏) such that 𝑦 ∈ 𝑉. 

 

Proof 

Define: 𝐹 = {𝑦 ∈ 𝑋/𝑉 ∩ 𝐴 ≠ 𝜙 for every  𝑉 ∈ 𝜅𝑂(𝑋, 𝜏)and 𝑦 ∈ 𝑉}. It is to be proved that 𝑔𝑠𝜅𝐶𝑙(𝐴) = 𝐹. 

Take 𝑥 ∉ 𝐹.  By the construction of 𝐹, there exists a 𝜅-open set 𝑉 containing 𝑥 such that 𝑉 ∩ 𝐴 = 𝜙. Then 𝑋\𝑉 is 𝜅-closed 

and 𝐴 ⊆ 𝑋\𝑉. Taking 𝑔𝑠𝜅𝐶𝑙(𝐴) on both sides, 𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝑋\𝑉) = 𝑋\𝑉. Since 𝑥 ∈ 𝑉, 𝑥 ∉ 𝑋\𝑉 implie𝑥 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴). 

Hence 𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝐹. 

Take 𝑥 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴) =∩ {𝐸/𝐴 ⊆ 𝐸  𝑎𝑛𝑑 𝑋\𝐸 ∈ 𝜅𝑂(𝑋, 𝜏)}. Then there exists 𝜅-closed set 𝐸 such that 𝐴 ⊆ 𝐸, but 𝑥 ∉ 𝐸 

implies 𝑥 ∈ 𝑋\𝐸 ∈ 𝜅𝑂(𝑋, 𝜏) and (𝑋\𝐸) ∩ 𝐴 = 𝜙 implies 𝑥 ∉ 𝐸.  Therefore 𝐸 ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴).Hence 𝑔𝑠𝜅𝐶𝑙(𝐴) = 𝐸. 
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Theorem 3.22 

Let (𝑋, 𝜏) be a topological space. Let 𝐴 and 𝐵 be subsets of 𝑋 and 𝜅 be an operation on 𝐺𝑆𝑂(𝑋, 𝜏). The statements below are 

true. 

(a) The set 𝑔𝑠𝜅𝐶𝑙(𝐴) is 𝜅-closed and 𝐴 ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴). 

(b) 𝐴  is 𝜅-closed if and only if 𝐴 = 𝑔𝑠𝜅𝐶𝑙(𝐴). 

(c) If 𝐴 ⊆ 𝐵  then 𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴). 

(d) 𝑔𝑠𝜅𝐶𝑙(𝐴) ∪ 𝑔𝑠𝜅𝐶𝑙(𝐵) ⊆  𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵). 

(e) If 𝜅  is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅, then 𝑔𝑠𝜅𝐶𝑙(𝐴) ∪ 𝑔𝑠𝜅𝐶𝑙(𝐵) =  𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵).  

(f) 𝑔𝑠𝜅𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴) ∩ 𝑔𝑠𝜅𝐶𝑙(𝐵). 

(g) 𝑔𝑠𝜅𝐶𝑙(𝑔𝑠𝜅𝐶𝑙(𝐴)) = 𝑔𝑠𝜅𝐶𝑙(𝐴). 

Proof 

(a) Let 𝐴 ⊆ 𝑋. Consider 𝑔𝑠𝜅𝐶𝑙(𝐴) = 𝐵, say.                Claim: 𝐵 is 𝜅-closed.To 

prove:𝑋 − 𝐵 is 𝜅-open.                Now B = 𝑔𝑠𝜅𝐶𝑙(𝐴) =∩ {all κ- closed sets containg A}.                                       

𝑋\𝐵 = 𝐵𝐶 = (𝑔𝑠𝜅𝐶𝑙(𝐴))
𝐶

=∪ {𝑎𝑙𝑙 𝜅- 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝐴}= a 𝜅-open set (by Theorem (3.5) (c).  

𝐴 ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴) follows directly from the Definition(3.20). 

(b) 𝐴  is 𝜅-closed if and only if 𝐴 = 𝑔𝑠𝜅𝐶𝑙(𝐴) 

Necessity: Since 𝐴 is 𝜅-closed, 𝑔𝑠𝜅𝐶𝑙(𝐴) =∩ {all κ − closed sets containg A} = 𝐴 

Sufficiency: Since 𝐴 = 𝑔𝑠𝜅𝐶𝑙(𝐴)and from (a) 𝑔𝑠𝜅𝐶𝑙(𝐴)is 𝜅-closed. We get 𝐴 is       𝜅-closed. 

(c)  Let 𝐴 ⊆ 𝐵. 

𝑔𝑠𝜅𝐶𝑙(𝐴) =∩ {all κ − closed sets containg A} =∩ 𝒜 where  𝒜 is the collection of all κ − closed sets containg A 

𝑔𝑠𝜅𝐶𝑙(𝐵) =∩ {all κ − closed sets containg B} =∩ ℬ where ℬis the collection of all κ − closed sets containg ℬ 

Since 𝒜 ⊆ ℬ, (∩ 𝒜) ⊆ (∩ ℬ). Therefore 𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴). 

(d) Let 𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵. Therefore By (c)𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵) and    𝑔𝑠𝜅𝐶𝑙(𝐵) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵). Hence 

𝑔𝑠𝜅𝐶𝑙(𝐴) ∪ 𝑔𝑠𝜅𝐶𝑙(𝐵) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵). 

(e) Suppose κ is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅 . Let 𝑦 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴) ∪ 𝑔𝑠𝜅𝐶𝑙(𝐵). Then 𝑦 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴) and𝑦 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴). Then there exist two κ-

open sets 𝑈 and 𝑉 such that 𝑈 ∩ 𝐴 = 𝜙 and𝑉 ∩ 𝐵 = 𝜙. Since κ is a𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅  operation, by Theorem(3.11),  𝐴 ∩ 𝐵 is κ-open in 

(𝑋, 𝜏).Therefore  (𝑈 ∩ 𝐴) ∩ (𝑉 ∩ 𝐵) = (𝑈 ∩ 𝑉) ∩ (𝐴 ∩ 𝐵) = 𝜙.            Implies 𝑥 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵). 

Hence,𝑔𝑠𝜅𝐶𝑙(𝐴 ∪ 𝐵)  ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴) ∪ 𝑔𝑠𝜅𝐶𝑙(𝐵). 

(f) We know 𝐴 ∩ 𝐵 ⊆  𝐴 and 𝐴 ∩ 𝐵 ⊆  𝐵.                Hence by (c),𝑔𝑠𝜅𝐶𝑙(𝐴 ∩ 𝐵)  ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴) 

and 𝑔𝑠𝜅𝐶𝑙(𝐴 ∩ 𝐵)  ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐵). Therefore 𝑔𝑠𝜅𝐶𝑙(𝐴 ∩ 𝐵)  ⊆ 𝑔𝑠𝜅𝐶𝑙(𝐴) ∩ 𝑔𝑠𝜅𝐶𝑙(𝐵). 

(g) From (a), 𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝜅𝐶𝑙(𝑔𝑠𝜅𝐶𝑙(𝐴)). Now by Theorem(3.19) for every   𝜅-open set containing 𝑧 in (𝑋, 𝜏), 𝑉 ∩
𝑔𝑠𝜅𝐶𝑙(𝐴) ≠ 𝜙. Therefore there exist a point 𝑦 ∈ 𝑉 and  𝑦 ∈ 𝑔𝑠𝜅𝐶𝑙(𝐴). Again by Theorem (3.19), 𝑉 ∩ 𝐴 ≠ 𝜙. Which implies 𝑧 ∈
𝑔𝑠𝜅𝐶𝑙(𝐴). Hence 𝑔𝑠𝜅𝐶𝑙(𝑔𝑠𝜅𝐶𝑙(𝐴)) =  𝑔𝑠𝜅𝐶𝑙(𝐴). 

Definition 3.23 

An operation 𝜅 on GSO(X,τ) is said to be 𝒐𝒑𝒆𝒏𝜿operation if for every 𝑔𝑠-open neighbourhood 𝑈 of 𝑥 ∈ 𝑋, there exists a 
𝜅-open set 𝑉 such that 𝑥 ∈ 𝑉 and 𝑉 ⊂ 𝑈𝜅  

Theorem 3.24 

Let 𝜅: 𝐺𝑆𝑂(𝑋, 𝜏) → 𝑃(𝑋) be an operation on 𝐺𝑆𝑂(𝑋, 𝜏) and 𝑃 and 𝑄 are subsets of 𝑋. Then the results below are true. 

(a) 𝑔𝑠𝐶𝑙𝜅(𝐴) is 𝑔𝑠-closed and 𝐴 ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴). 

(b) 𝐴 is 𝜅-closed if and only if 𝐴 = 𝑔𝑠𝐶𝑙𝜅(𝐴). 

(c) If (𝑋, 𝜏) is a κ-regular space then 𝑔𝑠𝐶𝑙𝜅(𝐴) = 𝑔𝑠𝑐𝑙(𝐴). 

(d) If 𝐴 ⊆ 𝐵 then 𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐵). 

(e) 𝑔𝑠𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵). 

(f) If 𝜅 is is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅, then 𝑔𝑠𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵) =  𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵). 

(g) 𝑔𝑠𝐶𝑙𝜅(𝐴 ∩ 𝐵) ⊆  𝑔𝑠𝐶𝑙𝜅(𝐴) ∩ 𝑔𝑠𝐶𝑙𝜅(𝐵). 

(h) If 𝜅 is 𝑜𝑝𝑒𝑛 𝜅operation then 𝑔𝑠𝐶𝑙𝜅(𝐴) = 𝑔𝑠𝜅𝐶𝑙(𝐴) and 𝑔𝑠𝐶𝑙𝜅(𝑔𝑠𝐶𝑙𝜅(𝐴)) = 𝑔𝑠𝐶𝑙𝜅(𝐴). 

Proof 

(a) Let 𝐴 ⊆ 𝑋.  Consider 𝑥 ∈ 𝑔𝑠𝑐𝑙(𝐶𝑙𝜅(𝐴)). Then for every 𝑔𝑠-open neighbourhood 𝑉 of 𝑥, 𝑉 ∩ 𝑔𝑠𝐶𝑙𝜅(𝐴) ≠ 𝜙. Let 𝑦 ∈
𝑉 ∩ 𝑔𝑠𝐶𝑙𝜅(𝐴). Since 𝑉 ⊆ 𝑉𝜅, 𝑉𝜅 ∩ 𝑔𝑠𝐶𝑙𝜅(𝐴) ≠ 𝜙. Implies 𝑥 ∈ 𝑔𝑠𝐶𝑙𝜅(𝐴).                                          Therefore, 

𝑔𝑠𝐶𝑙(𝑔𝑠𝐶𝑙𝜅(𝐴)) ⊆  𝑔𝑠𝐶𝑙𝜅(𝐴). Hence 𝑔𝑠𝐶𝑙𝜅(𝐴) is 𝑔𝑠-closed.  

Let 𝑥 ∈ 𝐴 and 𝑈  be any 𝑔𝑠-open neighbourhood of 𝑥, then 𝑥 ∈ 𝑈 ∩ 𝐴. Now 𝑈 ⊆ 𝑈𝜅  implies𝑥 ∈ 𝑈𝜅 ∩ 𝐴 which 𝑈𝜅 ∩ 𝐴 = 𝜙. 

Therefore,𝑥 ∈ 𝑔𝑠𝐶𝑙𝜅(𝐴).                       Hence, 𝐴 ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴).  

(b) Necessity: Let 𝐴 be 𝜅-closed. Then𝑋\𝐴 is 𝜅-open. Claim:𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝐴. Let 𝑥 ∉ 𝐴.Then𝑥 ∈ 𝑋\𝐴. Since 𝑋\𝐴  is a 𝜅-

open set containing 𝑥, by Definitin(3.3), there exists a 𝑔𝑠-open set containing 𝑥 such that 𝑈𝜅 ⊆ 𝑋\𝐴 which implies 𝑈𝜅 ∩ 𝐴 = 𝜙. 

Therefore 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴). Hence 𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝐴.   

Sufficiency: Let𝐴 = 𝑔𝑠𝐶𝑙𝜅(𝐴). Let 𝑥 ∈ 𝑋\𝐴. Then𝑥 ∉ 𝐴 = 𝑔𝑠𝐶𝑙𝜅(𝐴), there exists a 𝑔𝑠-open neighbourhood W of 𝑥 such 

that 𝑊𝜅 ∩ 𝐴 = 𝜙 which implies𝑊𝜅 ⊆ 𝑋\𝐴. By Definition(3.3), 𝑋\𝐴 is 𝜅-open (i.e.)𝐴 is 𝜅-closed. 

(c) 𝑔𝑠𝑐𝑙(𝐴) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴) is proved in Remark(3.17). Let 𝑥 ∉ 𝑔𝑠𝑐𝑙(𝐴).Then there exists a 𝑔𝑠-open neighbourhood 𝑈 of 𝑥 

such that  𝑈 ∩ 𝐴 = 𝜙. Since (𝑋, 𝜏) is a           κ-regular space by Definition(3.11), for every 𝑥 ∈ 𝑋, there exists a 𝑔𝑠-

neighbourhood 𝑉of 𝑥 such that 𝑉𝜅 ⊆ 𝑈 and so 𝑉𝜅 ∩ 𝐴 = 𝜙 which implies 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴). Therefore, 𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝑔𝑠𝑐𝑙(𝐴). 

(d) Given 𝐴 ⊆ 𝐵. Let 𝑥 ∈ 𝑔𝑠𝐶𝑙𝜅(𝐴). By Definition(3.17), there exists a 𝑔𝑠-open neighbourhood 𝑈 of 𝑥 such that 𝑈𝜅 ∩ 𝐴 ≠
𝜙which implies 𝑉𝜅 ∩ 𝐵 ≠ 𝜙. Therefore 𝑥 ∈ 𝑔𝑠𝐶𝑙𝜅(𝐴). Hence 𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐵). 
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(e) 𝐴 ⊆ (𝐴 ∪ 𝐵) implies 𝑔𝑠𝐶𝑙𝜅(𝐴) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵) From(d).            Similarly𝐵 ⊆ (𝐴 ∪ 𝐵) implies 𝑔𝑠𝐶𝑙𝜅(𝐵) ⊆
𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵).                                                           

Hence, 𝑔𝑠𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵). 

(f) Let 𝜅 is a𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅 operation. Let 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵). 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴) and 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐵). There exists 𝑔𝑠-open 

neighbourhoods 𝑈 and 𝑉 of 𝑥 such that 𝑈𝜅 ∩ 𝐴 = 𝜙 and𝑉𝜅 ∩ 𝐵 = 𝜙 . Since 𝜅 is a𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝜅  by Definition (3.10), there exists a 

𝑔𝑠-open neighbourhood 𝐶 of 𝑥 such that  𝐶𝜅 ⊆ 𝑈𝜅 ∩ 𝑉𝜅.             Which implies 𝐶𝜅 ∩ (𝐴 ∪ 𝐵) ⊆ (𝑈𝜅 ∩
𝑉𝜅) ∩ (𝐴 ∪ 𝐵) = 𝜙 and 𝑥 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵). Therefore 𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵).                         

Hence gs𝐶𝑙𝜅(𝐴) ∪ 𝑔𝑠𝐶𝑙𝜅(𝐵) =  𝑔𝑠𝐶𝑙𝜅(𝐴 ∪ 𝐵). 

(g) 𝐴 ∩ 𝐵 ⊆ 𝐴 implies gs𝐶𝑙𝜅(𝐴 ∩ 𝐵) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴) and 𝐴 ∩ 𝐵 ⊆ 𝐵implies 𝑔𝑠𝐶𝑙𝜅(𝐴 ∩ 𝐵) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝑏)  Therefore, 𝑔𝑠𝐶𝑙𝜅(𝐴 ∩
𝐵) ⊆  𝑔𝑠𝐶𝑙𝜅(𝐴) ∩ 𝑔𝑠𝐶𝑙𝜅(𝐵). 

(h) Let 𝑦 ∉ 𝑔𝑠𝐶𝑙𝜅(𝐴), there exists a 𝑔𝑠-open neighbourhood 𝑈 of 𝑦 such that(𝑈𝜅 ∩ 𝐴) = 𝜙. Since the operation𝜅 is 𝑜𝑝𝑒𝑛 𝜅, 

there exists a κ-open set 𝑉 containing 𝑦 such that 𝑉 ⊆ 𝑈𝜅implies 𝑉 ∩ 𝐴=ϕ and 𝑥 ∉ 𝑔𝑠𝜅𝐶𝑙(𝐴) by Theorem(3.19). Hence 

𝑔𝑠𝜅𝐶𝑙(𝐴) ⊆ 𝑔𝑠𝐶𝑙𝜅(𝐴). 

Let 𝑥 ∈ 𝑔𝑠𝐶𝑙𝜅(𝐴). Suppose 𝑥 ∉ 𝐹 where F is 𝜅-closed and 𝐴 ⊆ 𝐹. Then𝑥 ∈ 𝑋\𝐹, and 𝐴 ∩ (𝑋\𝐹) = 𝜙. Since 𝑋\𝐹 is 𝜅-open 

and 𝑥 ∈ 𝑋\𝐹, there exists a𝑔𝑠-open set 𝑊 such that 𝑥 ∈ 𝑊 and 𝑊𝜅 ⊆ 𝑋\𝐹.  Which implies 𝐴 ∩ 𝑊𝜅 = 𝜙. Thus𝑥 ∉  𝑔𝑠𝐶𝑙𝜅(𝐴).

  Hence, if the operation𝜅 is 𝑜𝑝𝑒𝑛 𝜅operation then𝑔𝑠𝐶𝑙𝜅(𝐴) = 𝑔𝑠𝜅𝐶𝑙(𝐴). 
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